Morzsák

Oldal címe

Enhanced U-Net for Infant Brain MRI Segmentation: A (2+1)D Convolutional Approach

Címlapos tartalom

Background: Infant brain tissue segmentation from MRI data is a critical task in medical imaging, particularly challenging due to the evolving nature of tissue contrasts in the early months of life. The difficulty increases as gray matter (GM) and white matter (WM) intensities converge, making accurate segmentation challenging. This study aims to develop an improved U-net-based model to enhance the precision of automatic segmentation of cerebro-spinal fluid (CSF), GM, and WM in 10 infant brain MRIs using the iSeg-2017 dataset.

Methods: The proposed method utilizes a U-net architecture with (2+1)Dconvolutional layers and skip connections. Preprocessing includes intensity normalization using histogram alignment to standardize MRI data across different records. The model was trained on the iSeg-2017 dataset, which comprises T1-weighted and T2-weighted MRI data from ten infant subjects. Cross-validation was performed to evaluate the model’s segmentation performance.

Results: The model achieved an average accuracy of 92.2%, improving on previous methods by 0.7%. Sensitivity, precision, and Dice similarity scores were used to evaluate the performance, showing high levels of accuracy across different tissue types. The model demonstrated a slight bias toward misclassifying GM and WM, indicating areas for potential improvement. Conclusions: The results suggest that the U-net architecture is highly effective in segmenting infant brain tissues from MRI data. Future work will explore enhancements such as attention mechanisms and dual-network processing for further improving segmentation accuracy.