
Konténer orkesztráció és autóskálázás
MiCADO referencia architektúrával

Container orchestration and autoscaling
by MiCADO

Kovács József

Motivation

␥ Kubernetes is good

␥ Kubernetes is hard

30/10/23 1

Kubernetes is good

for Cloud Native Microservices Architectures

␥ Self-healing

␥ Auto-scaling

␥ Health-checking

␥ Rolling updates

␥ Networking

␥ Security

30/10/23 2

Kubernetes is hard

(even when using a managed service)

␥ Deploying/managing a cluster

␥ Configuring a cluster

␥ Understanding abstractions

␥pod, job, deployment, replica set

␥ Writing templates

␥manifest files

␥ Debugging

30/10/23 3

Application level orchestration

• multiple

heterogeneous

clouds

• wide range of

scaling policies

• wide range of

monitoring

parameters

• advanced

security

solutions

30/10/23 4

Application 1 Application 2 Application N

Service 1 Service 2 Service 3 Service 4 Service 5

Baseline resource consumption

Variable resource consumption

Cloud services

Dynamic
demand

Manually
adjusted
supply

Resource requirements

To be replaced by
automatically

adjusted supply

To achieve resource scalability and efficient

resource utilisation supporting

Solution

Dynamic Cloud Orchestrator

␥ "One-click" deployment of an enhanced Kubernetes cluster

␥ Deploys, provisions, manages (auto-scaling, self-healing):

␥ Applications (containers)

␥ Cloud resources (virtual machines)

␥ Improved security

␥ Metrics dashboard

30/10/23 5

MiCADO – Microservices-based Cloud Application-level Dynamic Orchestrator

30/10/23 6

␥History

␥Result of the H2020 COLA (Cloud Orchestration at the Level of

Application) project (2017-2019)

␥Based on cooperation between Westminster University and

SZTAKI

␥Since 2019, Westminster University has taken over the

maintenance and development, SZTAKI contribution

␥Further developed in many European projects since the first

prototype

␥ currently actively developed in the H2020 DIGITbrain project

␥used in PITHIA-NRF, CO-VERSATILE (and Harpocrates and ARCAFF from

October 2022)

MiCADO – Microservices-based Cloud Application-level Dynamic Orchestrator

30/10/23 7

␥Main features

␥Automated application deployment based on TOSCA-based application

description templates

␥TOSCA - Topology and Orchestration Specification for Cloud Applications

␥Automated scaling based on highly customisable scaling policies
␥ scaling at both container and virtual machine levels

␥Multi-cloud support – application portability

␥Policy driven security settings

␥Open source and fully managed distributions

␥Job queue management with the extension of JQueuer

␥Edge support introduced for IoT-based applications

The overall concept
Set of
Microservices

Reside in
Private repo

App

Run in docker
containers

Service to VM
mapping

Attach Custom
Policies

Monitoring

Security

Scaling

MiCADO
facilitate such
Cloud-agnostic
and customizable
orchestration of
application

Cloud and
VMs selection

Selection from
multi-cloud

High-level architecture

30/10/23 9

cAdvisor

Cloud
Orchestrator

Monitoring
System

Translates
ADT

Enforces
scaling

Container
Orchestrator

Prometheus

Submitter Policy Keeper

Application
Description Template

(ADT) Container/node
Monitoring

Container Executor

MiCADO MASTER NODE MiCADO
WORKER NODE

ML based
optimisation

Optimiser

Node Exporter

Docker

Kubernetes

Swarm

Occopus

Terraform

Application Description - Basics

30/10/23 10

Cloud Infrastructure (Instance size, SSH
keys, opened ports, VM image)

Container Infrastructure (Container,
volumes, configurations)

Application Description - Policies

30/10/23 11

● Monitoring subsystem
○ Monitoring metrics are collected by

dynamically attachable data collectors
(Prometheus exporters)

○ System and application metrics

● Highly customisable scaling system
○ Scaling of BOTH containers and virtual

machines are supported

○ Scaling logic is fully programmable (using
Python)

○ Various strategies (load-based, deadline-
based, event-based, Scheduled)

Custom
Python code

Support for a large variety of clouds

Advanced security features

30/10/23 14

TOSCA-
based

Application
Description
Template

(ADT)

MiCADO MASTER NODE
MiCADO

WORKER NODE

HTTPS
IPSEC

App-level
Firewall
(Zorp)

L7 Filtering
(Zorp)

User
management
(Flask-User)

Secret
Management

(Hashicorp
Vault)

Password-based
authentication

(Zorp)

Secret Storage
(Kubernetes

secret)

• implements
industry-
standard best
practices

• provides security
functions lacking
in most cloud
environments

• minimize the need
of user-supplied
configuration

• pluggable
architecture

• validated by
penetration
testing

www.project-cola.eu 15

• Large number of jobs results in significant overall
execution time

• Usually Restricted to complete all jobs by a
deadline
• Where to put the jobs?
• How to distribute?
• How to execute (in containers)
• How to liaise with deadline?

MICADO
MASTER

ADT:

infrastructure

and scaling

rules
End user

MiCADO

Submitter

Policy

Keeper

(Scaling

logic)

cqueue

worker

MICADO
WORKER

cqueue

workerJobs
Scale up/

down

jQUEUER

MASTER jQueuer

Agent

Jobs

experiment

.json

Container and

Cloud

Orchestrator

MICADO

jQueuer system
jobs

February 06th 2020

MiCADO and job execution

MiCADO and job execution

30/10/23 16

MiCADO
Master

200
jobs

MiCADO Worker n

JQueuer
Agent

1-hour
deadline

Min VMs = 2
Max VMs = 10
Scaling logic

Calculated by scaling policy

experiment.json
JQueuer Manager

MiCADO Worker 2

JQueuer
Agent

MiCADO Worker 1

JQueuer
Agent

Tamas Kiss, James Des Lauriers, Gregoire Gesmier, Gabor Terstyanszky,
Gabriele Pierantoni, Osama Abu Oun, Simon JE Taylor, Anastasia
Anagnostou, Jozsef Kovacs, Cloud-agnostic Queuing System to Support
the Implementation of Deadline-based Application Execution
Policies, Future Generation Computer Systems, Elsevier, Vol 101,
December, 2019, pp 99-111

https://doi.org/10.1016/j.future.2019.05.062

␥ Solution using KubeEdge

␥ Automated deployment of

microservices extended to

edge nodes

␥ Monitoring information

collected from edge

workers

␥ Scaling/reconfiguration

policies extended towards

edge

MiCADO
Master

KubeEdge
Cloud-core

MiCADO

Worker 1

MiCADO

Worker 2

MiCADO edge/fog node 1 MiCADO edge/fog node 2

KubeEdge
Edge-core

KubeEdge
Edge-core

TOSCA
Application
Description
Template

(ADT)

MiCADO EDGE/FOG Extension

Architecture with Edge extension

Now with a single uniform descriptor (ADT), the entire
Cloud-to-Edge application can be described, E.g.

→Edge Node

→Service Containerauto-deployment of edge through ADT

Cloud worker

Edge-core

F
o

g
 n

o
d

e
(l

ap
to

p
)

TOSCA ADT

Receiver 1 Receiver N SenderProcessor

MiCADO Master
FD-Cloud

Edge-core

Client

Edge-core

Client

E
d
g
e

d
ev

ic
e

N

(R
as

p
b
er

ry
 p

i)

Node/contain

er Monitoring

Node/container

Monitoring

E
d
g
e

d
ev

ic
e

N

(R
as

p
b

er
ry

 p
i)

Virtual machine

Container

Physical node

Raw images

Non container

component

Greyscale images

Legend

␥ Cloud server stores

images with faces

␥ Fog node recognises

faces in images

␥ Edge device captures

video stream

MiCADO edge/fog extension – face detection application

Ullah, A., Dagdeviren, H., Ariyattu, R.C. et
al. MiCADO-Edge: Towards an Application-level
Orchestrator for the Cloud-to-Edge Computing
Continuum. J Grid Computing 19, 47 (2021).
https://doi.org/10.1007/s10723-021-09589-5

Deployment: Step 1: install micado-client

Step 2: launch a new VM for MiCADO

Step 3: configure 5 groups of details

Step 4: deploy
micado

Step 5: try demos

26

Step 6: build your own application

27
https://micado-scale.github.io

Summary

● Cloud-agnostic orchestration solution
● Pluggable architecture based on open-source components
● Standardised TOSCA-based application and policy description
● Automated application deployment in clouds
● Support for highly customisable scaling policies
● Support for large variety of clouds

28

https://micado-scale.github.io

Thank you for your interest!

Acknowledgement:
the work and slides presented were provided by the members of
Centre of Parallel Computing at The University of Westminster

https://micado-scale.github.io
presenter, designer, contributor: Jozsef Kovacs jozsef.kovacs@sztaki.hun-ren.hu

project leader: Tamas Kiss t.kiss@westminster.ac.uk
main developer: Jay Deslauriers j.deslauriers@westminster.ac.uk

https://micado-scale.github.io/
mailto:jozsef.kovacs@sztaki.hu
mailto:t.kiss@westminster.ac.uk
mailto:j.deslauriers@westminster.ac.uk

	0. dia: Konténer orkesztráció és autóskálázás MiCADO referencia architektúrával Container orchestration and autoscaling by MiCADO
	1. dia: Motivation
	2. dia: Kubernetes is good
	3. dia: Kubernetes is hard
	4. dia: Application level orchestration
	5. dia: Solution
	6. dia: MiCADO – Microservices-based Cloud Application-level Dynamic Orchestrator
	7. dia: MiCADO – Microservices-based Cloud Application-level Dynamic Orchestrator
	8. dia: The overall concept
	9. dia: High-level architecture
	10. dia: Application Description - Basics
	11. dia: Application Description - Policies
	12. dia
	13. dia: Support for a large variety of clouds
	14. dia: Advanced security features
	15. dia
	16. dia: MiCADO and job execution
	17. dia: MiCADO EDGE/FOG Extension
	18. dia: Architecture with Edge extension
	19. dia: Now with a single uniform descriptor (ADT), the entire Cloud-to-Edge application can be described, E.g.
	20. dia: MiCADO edge/fog extension – face detection application
	21. dia: Deployment: Step 1: install micado-client
	22. dia: Step 2: launch a new VM for MiCADO
	23. dia
	24. dia: Step 3: configure 5 groups of details
	25. dia: Step 4: deploy micado
	26. dia: Step 5: try demos
	27. dia: Step 6: build your own application
	28. dia: Summary
	29. dia: Thank you for your interest! Acknowledgement: the work and slides presented were provided by the members of Centre of Parallel Computing at The University of Westminster

