

Mélytanulást támogató referencia architektúra az ELKH Cloudon

Farkas Attila

farkas.attila@sztaki.hu

Bemutatkozás

Farkas Attila

- SZTAKI tudományos segédmunkatárs, kutató
- PERL Párhuzamos és Elosztott Rendszerek Kutatólaboratórium
- farkas.attila@sztaki.hu

TensorFlow és Jupyter

TensorFlow

- Google Brain csapat által fejlesztett Python (C++, JS) függvénykönyvtár adatfolyam programozáshoz
- 2015 novemberében publikálták először
- CPU/GPU támogatás, több platformon

Keras

- Főbb tervezési szempontok a megtervezésekor
 - Felhasználóbarátság
 - Modularitás
 - Egyszerű bővíthetőség
 - Python
- A TensorFlow 2017 óta az alacsony szintű interfész mellett a Kerast hivatalosan támogatja, olyannyira, hogy a TF csomag részeként elérhető
 - A TensorFlow 2.0 (2019 szept) már alapértelmezetten Keras csomaggal támogatott

Jupyter Notebook

- Nyílt forráskódú webalkalmazás
- Fejlesztő környezet biztosít
- Adat vizualizációs megoldás
- Széleskörű programozási nyelv támogatás
- A Notebookok könnyedén megoszthatók

JupyterLab

- Jupyter Notebook továbbfejlesztett verziója
- Web alapú interaktív fejlesztőkörnyezet
- Terminal biztosítása
- Moduláris felépítés
- Bővítmények támogatása

ELKH Cloud

TensorFlow referencia architektúra ELKH Cloudon GPU erőforássokkal

ELKH Cloud

Occopus leírók

Megoldás használatának lépései

ELKH Cloud

Tensorflow

GPU

ELKH Cloud

Felhasználó feladatköre:

0. Lépés: Előkészítés (ELKH Cloud projekt, Üres Ubuntu VM elindítás)

Occopus

Leírók

- 1. Lépés: Occopus telepítés/konfigurálás a virtuális gépen
- 2. Lépés: Leírók letöltése a virtuális gépre Occopus/ELKH Cloud weboldala
- 3. Lépés: Tűzfalszabályok létrehozása ELKH Cloud OpenStack felületén
- 4. Lépés: Leírók személyre szabása a virtuális gépen
- 5. Lépés: Occopus aktiválása \$ source ~/occopus/bin/activate
- 6. Lépés: Leírók importálása Occopus számára
 \$ occopus-import nodes/node_definitions.yaml
- 7. Lépés: Infrastruktúra kiépítése \$ occopus-build infra-tensorflow.yaml
- 8. Lépés: Infrastruktúra használata

2. Lépés: Leírók letöltése a virtuális gépre

A rendelkezésre álló referencia architektúrák és leírásuk:

- Occopus cloud orchestrator indítása
- JupyterLab
- DataAvenue
- · Cloud alkalmazásokat támogató portál indítása
- · Flowbster Autodock Vina
- CQueue klaszter
- Docker-Swarm klaszter kiépítése (Frissítés: ELKH Cloud Microsoft Azure hibrid felhő támogatással)
- Kubernetes klaszter
- Apache Hadoop klaszter kiépítése
- Apache Spark klaszter RStudio stack-el
- · Apache Spark klaszter Python stack-el (Frissítés: ELKH Cloud Microsoft Azure hibrid felhő támogatással)
- · TensorFlow, Keras, Jupyter Notebook stack
- TensorFlow, Keras, Jupyter Notebook GPU stack (Frissítés: ELKH Cloud Microsoft Azure hibrid felhő támogatással)
- · Horovod klaszter
- Kafka klaszter
- Slurm klaszter

https://science-cloud.hu/felhasznalast-segito-szolgaltatasok

2. Lépés: Leírók letöltése a virtuális gépre #2

Címlap

TensorFlow, Keras, Jupyter Notebook GPU Stack

Áttekintés:

A TensorFlow egy nyílt forráskódú platform gépi tanuláshoz. Átfogó, rugalmas eszközeinek, könyvtárainak és közösségi erőforrásainak ökoszisztémája lehetővé teszi a kutatók számára, hogy az ML-ben a legmodernebbek legyenek, és a fejlesztők könnyen fejlesszenek és futtassanak ML-alapú alkalmazásokat. A TensorFlow-t a Google Brain csapata fejlesztette ki a Google belső használatához. 2015. november 9-én adták ki az Apache licensz 2.0 alatt. További információkért látogasson el a hivatalos TensorFlow oldalra.

Keras egy magas szintű neurális hálózatok API, amelyet Pythonban írtak és képes TensorFlow, CNTK vagy Theano felett futni. Kifejlesztették a gyors kísérletezés lehetőségét. A jó kutatás elvégzésének kulcsa az, hogy az ötletből a megoldásig a lehető legkisebb késleltetéssel tudjunk menni. A Keras számos általánosan használt neurális hálózatépítő blokk, például rétegek, célok, aktiválási funkciók, optimalizálók és számos olyan eszközt tartalmaz, amely megkönnyíti a kép- és szövegadatok kezelését. A standard neurális hálózatokon kívül a Keras támogatja a konvolúciós és ismétlődő neurális hálózatokat is. Támogatja a többi segéd réteget, például a lemorzsolódást, a kötegelt normalizálást és az összevonást. További információ a Keras hivatalos lapján található.

A teljes gépi tanulási környezet a következő komponensekből áll: Jupyter Notebook, Keras, TensorFlow egy GPU kártya teljesítményét felhasználva.

Fontos: Ha szeretné használni ezt a bemutatót, a virtuális gépnek rendelkeznie kell egy hozzácsatolt NVIDIA GPU kártyával. Ha módosítani szeretné a CUDA illesztőprogramot, nyugodtan személyre szabhatja az install-cuda.sh szkriptet a nodes/cloud_init_jupyter_server_gpu.yaml fájlban.

Features

- creating a node through contextualisation
- utilising health check against a predefined port

Prerequisites

- accessing a cloud through an Occopus-compatible interface (e.g EC2, Nova, Azure, etc.)
- · target cloud contains a base Ubuntu OS image with cloud-init support

Download

You can download the example as tutorial.examples.tensorflow-keras-jupyter-gpu .

Note

In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section). However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes in the same cloud.

Használati és telepítési útmutató:

https://occopus.readthedocs.io/en/latest/tutorial-bigdata-ai.html#tensorflow-and-keras-with-jupyternotebook-stack-using-nvidia-gpu-card

3. Lépés: Tűzfalszabályok létrehozása

Displaying 4 items

4. Lépés: Leírók személyre szabása a virtuális gépen

- Infrastruktúra definíciós fájl
 - JupyterLab jelszó megadás
 - Alapértelmezett jelszó:
 - tensorflow

infra_name: tensorflow user_id: somebody@somewhere
variables: J <mark>UPYTER_PASSWORD: tensorflow</mark>
nodes: - &M name: tensorflow type: tensorflow_node

ELKH Cloud

4. Lépés: Leírók személyre szabása a virtuális gépen #2

Ubuntu 20.04-es alap képfájl használata

ID

Docker CE-t előre telepítve tartalmaz

Images / Ubuntu 20.04 LTS

Name Ubuntu 20.04 LTS Description Ubuntu 20.04 LTS Cloud image with Docker. username: ubuntu, password: ubuntu 88bafb03-b169-4289-8f6f-c0cffc9177ca

GPU erőforrást is tartalmazó flavour kiválasztása

ID	b0af1664-0d30-4339-90ee- 8638b00b832c
VCPUs	4
RAM	8GB
Size	50GB

4. Lépés: Leírók személyre szabása a virtuális gépen #3

Csomópont definíciós fájl (nodes/node_definition.yaml)

'node def:tensorflow node': resource: type: nova endpoint: replace with endpoint of nova interface of your cloud project id: replace with projectid to use user domain name: Default image id: replace with id of your image on your target cloud network id: replace with id of network on your target cloud server name: tensorflow-{{cut(infra id,0,4)}} flavor name: replace with id of the flavor on your target cloud key name: replace with name of keypair or remove security groups: - replace with security_group_to_add_or_remove_section floating_ip: add_yes_if_you_need_floating ip or remove contextualisation: type: cloudinit context template: !yaml import url: file://cloud init tensorflow.yaml health check: ports: - 8888 timeout: 3600

'node_def:tensorflow_node':

. . .

resource: type: nova endpoint: https://sztaki.cloud.mta.hu:5000/v3 project id: a9c30db63ddf47a98045ef9c726c7436 user domain name: Default image id: 88bafb03-b169-4289-8f6f-c0cffc9177ca network id: 01efee1c-858c-4047-a48a-e2fab056f82a server name: tensorflow-{{cut(infra id,0,4)}} flavor name: b0af1664-0d30-4339-90ee-8638b00b832c key name: key name security groups: - a52445ab-ab61-4eff-9d71-948285106d2f floating ip: yes contextualisation: type: cloudinit context_template: !yaml import url: file://cloud init tensorflow.yaml health check: ports: - 8888 timeout: 3600

https://occopus.readthedocs.io/en/latest/user-doc-collecting-resources.html#openstack-horizon-nova

5. - 6. Lépés: Occopus aktiválása és leírok importálása

5. Lépés: Occopus aktiválása

ubuntu@occo:~/tensorflow\$ source \$HOME/occopus/bin/activate

(occopus) ubuntu@occo:~/tensorflow\$

6. Leírók importálása Occopus számára

\$ occopus-import nodes/node_definitions.yaml
Successfully imported nodes: tensorflow_node

7. Lépés: Infrastruktúra kiépítése

\$ occopus-build infra-tensorflo	w.yaml
** 2021-06-27 11:01:56,835	Creating node 'tensorflow'/'d72fd6b6-12cf-4f43-b309-4fc13594a4ce'
** 2021-06-27 11:23:41,223	Health checking for node 'tensorflow'/'d72fd6b6-12cf-4f43-b309-4fc13594a4ce'
** 2021-06-27 11:23:42,405	Checking node reachability (d72fd6b6-12cf-4f43-b309-4fc13594a4ce):
** 2021-06-27 11:23:42,418	193.224.59.182 => ready
** 2021-06-27 11:23:42,418	Checking port availability (d72fd6b6-12cf-4f43-b309-4fc13594a4ce):
** 2021-06-27 11:23:42,423	8888 => ready
** 2021-06-27 11:23:42,424	Health checking result: ready
** 2021-06-27 11:23:43,560	Submitted infrastructure: '249ba186-4333-4f6b-b8ec-58e72d96a4d4'
** 2021-06-27 11:23:43,585	List of nodes/instances/addresses:
** 2021-06-27 11:23:43,585	tensorflow:
** 2021-06-27 11:23:43,585	d72fd6b6-12cf-4f43-b309-4fc13594a4ce:
** 2021-06-27 11:23:43,585	193.224.59.182
249ba186-4333-4f6b-b8ec-58	e72d96a4d4

8. Lépés: Infrastruktúra használata

- Belépés JupyterLab felületre:
 - http(s)://<JupyterLabIP>:8888/lab

◯ Jupyter Server × +		•	<u></u>		×	
← → C ▲ Not secure 193.224.59.182:8888/login?nex	t=%2Flab%3F	☆	⊜	Incognito	:	
	🕽 Jupyter					
Password:	Log in					

8. Lépés: Infrastruktúra használata #2

0	Jupy	terLab			×	+									•	- <u></u>	• 🗆	×	
÷	→	С	A No	ot secu	re 193	.224.5	9.182:8888/	lab							☆	⊜	Incognito	:	
()	File	Edit	View	Run	Kernel	Tabs	Settings	Helj	p									_	
		+	10	±	C		🛛 Launch	er										°o	
0	Fi	lter files	s by nai	me		Q													
0		/						[Notebook										
:=	Nan	ne	*	L	ast Modi	fied													
-		beginne	er.ip		TU days	ago			2										
28									Python 3										
									Console										
								-											
									2										
									Python 3										
									\$ Other										
									¢	\equiv	M								
									\$_ _	=	•								
									Terminal	Text File	/larkdown File		Show Cor Hel	p					
	lanal-		0.1		å	_						_				_	1	ahar	
S	imple		0	s_ 0 =	¢.												Laur	ncher	

8. Lépés: Infrastruktúra használata #3

8. Lépés: Infrastruktúra használata #4

[*]: model.fit(x_train, y_train, epochs=5)

Epoch 1/5										
1875/1875 [:		=] -	5s	2ms/step	-	loss:	0.4782	-	accuracy:	0.8594
Epoch 2/5										
1875/1875 [:		=] -	4s	2ms/step	-	loss:	0.1499	-	accuracy:	0.9562
Epoch 3/5										
1875/1875 [:		=] -	5s	2ms/step	-	loss:	0.1059	-	accuracy:	0.9678
Epoch 4/5										
1875/1875 [:		=] -	5s	2ms/step	-	loss:	0.0866	-	accuracy:	0.9737
Epoch 5/5										
1336/1875 [:	>] -	ET/	A: 1s - 10	055	s: 0.0	720 - a	ccu	uracy: 0.93	770

buntu@ un Jun	tensor 27 11	flow-: :32:5	249b:~\$ nvic 9 2021	lia-s	mi		
NVIDI	A-SMI	465.1	9.01 Driv	ver V	/ersion: 465.19.01 (CUDA Versio	on: 11.3
GPU Fan	Name Temp	Perf	Persistence Pwr:Usage/0	e-M Cap 	Bus-Id Disp.A Memory-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
0 N/A	NVIDIA 23C	Tesla P0	a K80 On 71W / 149	 9w 	00000000:00:05.0 Off 10810MiB / 11441MiB	 26% 	0 Default N/A
Proce GPU	sses: GI ID	CI ID	PID	 Туре	Process name		GPU Memory Usage
====== Θ	====== N/A	====== N/A	====== 76960	===== C	/usr/bin/python3	===========	10805MiB

Infrastruktúra törlése

Infrastruktúra ID lekérése

\$ occopus-maintain -l
Using default configuration file: '/root/.occopus/occopus_config.yaml'
** 2021-06-27 11:36:28,009 Starting up; PID = 186
List of active infrastructure:
249ba186-4333-4f6b-b8ec-58e72d96a4d4

Infrastruktúra törlése

\$ occopus-destroy -i 249ba186	-4333-4f6b-b8ec-58e72d96a4d4
Using default configuration file:	'/root/.occopus/occopus_config.yaml'
** 2021-06-27 11:37:17,094	Starting up; PID = 191
** 2021-06-27 11:37:17,096	Start dropping infrastructure 249ba186-4333-4f6b-b8ec-58e72d96a4d4
** 2021-06-27 11:37:17,116	Dropping node 'tensorflow'/'d72fd6b6-12cf-4f43-b309-4fc13594a4ce'
** 2021-06-27 11:37:20,998	Finished dropping infrastructure 249ba186-4333-4f6b-b8ec-58e72d96a4d4

Összefoglalás

Mélytanulást támogató referencia architektúra kiépítése

ELKH Cloud

- GPU erőforrások használata
- TensorFlow és JupyterLab alkalmazása
- ELKH Cloud technikai támogatás: info@science-cloud.hu

Köszönöm a figyelmet!