
Flowbster: Dynamic creation of data
pipelines in clouds

Peter Kacsuk, Jozsef Kovacs and
Zoltan Farkas

MTA SZTAKI

kacsuk@sztaki.hu

Motivations for Flowbster

• Processing big data typically means to execute a set of tasks on
a large data set

• These tasks are typically executed in a certain order

• Such an ordering of tasks can be represented as a Dataflow
graph

• Such dataflow graphs can be executed by dataflow workflow
systems

• The goal is to execute such dataflow workflow systems in
clouds using as many cloud resources as needed (on-demand
resource usage)

• The name of this new workflow system is Flowbster

• Job-oriented workflow systems work based on service
orchestration

• Nodes of a workflow represent jobs to be executed in the
infrastructure

• There is a workflow enactor (orchestrator) that recognizes that
a certain node/job can be executed and submits this job
together with the required data

• The result data is typically transferred back to the enactor (or
its storage)

• This execution mechanism is not optimal, requires to much
data transfer

Flowbster contra job-oriented workflow systems

Flowbster contra job-oriented workflow systems

• In Flowbster there is no enactor, it works based on service coreography

• Nodes of the workflow directly communicate the data among them

• Data is passed through the workflow as a data stream

• A node is activated and executes the assigned task when all the input data
arrived

• There is no useless data transfer

• Nodes of Flowbster workflows are deployed in the cloud as VMs and they
exist until all the input data sets are processed

• As a result a Flowbster workflow works as a temporary virtual infrastructure
deployed in the cloud

• Input data sets flow through this virtual infrastructure and meanwhile they
flow through they are processed by the nodes of the workflow

Concept of Flowbster

• The goal of Flowbster is to enable
o The quick deployment of the workflow as a pipeline infrastructure in the

cloud

o Once the pipeline infrastructure is created in the cloud it is activated
and data elements of the data set to be processed flow through the
pipeline

o As the data set flows through the pipeline its data elements are
processed as defined by the Flowbster workflow

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

Data set
to be

processed

Processed
data set

EUDAT

service

EUDAT

serviceEGI FedCloud service

Structure of the Flowbster workflow system

• Goal:
o To create the Flowbster workflow in the cloud without any cloud

knowledge

• Solution:
o To provide a layered concept where users with different expertise can

enter to the use of Flowbster

• 4 layers:

Graphical design layer

Application description
layer

Workflow system layer

Cloud deployment and
orchestration layer

Flowbster layers

Occopus layer

Occopus Layer

• Occopus is a cloud orchestrator and manager tool

• It automatically deploys virtual infrastructures (like Flowbster
workflows) in the cloud based on an Occopus descriptor that
consists of:
o Virtual infrastructure description:

• Specifies the nodes (services) to be deployed and all cloud-independent
attributes e.g. input values for a service.

• Specifies the dependencies among the nodes, to decide the order of
deployment

• Specifies scaling related attributes like min, max number of instances

o Node definition:

• Defines how to construct the node on a target cloud. This contains all cloud
dependent settings, e.g. image id, flavour, contextualization

• See detailed tutorials at the Occopus web page:
o http://occopus.lpds.sztaki.hu/tutorials

http://occopus.lpds.sztaki.hu/tutorials

Flowbster Workflow System Layer

• Contains uniform Flowbster workflow nodes
which have the internal structure shown in
the figure

• Every node provides the following actions:

o Receives and keeps track of the input items

o Executes the (pre-) configured application
when inputs are ready

o Identifies and forwards results of execution
towards a (pre-) configured endpoint

• Contains 3 components:
o Receiver: service to receive inputs

o Executor: service to execute predefined app

o Forwarder: service to send results of the
finished app to a predefined remote location

Rece
iver

Exec
utor

Forw
arde

r

sysconf:
global settings,

i.e. working
directories, port,

logging, etc.

appconf:
application definition,
i.e. exe, args, inputs,

outputs, endpoints, etc.

inputs

ready

job

finishe

d

Also requires 2 config files in order to costumize the node according
to the workflow definition

Connecting Flowbster nodes into a workflow

• Flowbster workflow nodes work in a service
coreography

• In appconf the list of outputs is defined

• For a certain output the endpoints are defined

• An endpoint must point to a receiver node

Rece
iver

Exec
utor Forw

arde
rsysconf

appconf

Rece
iver

Exec
utor Forw

arde
r

appconf

Rece
iver

Exec
utor Forw

arde
r

appconf

NodeA.out1 ->

NodeB.in

NodeA.out2 ->

NodeC.in

NodeB

NodeC

NodeA

sysconf

sysconf

Flowbster Graphical Design Layer

Flowbster Graphical Design Layer

Flowbster Application Description Layer

• Automatically generated from the graphical
view

• It contains the Occopus descriptor of the
Flowbster workflow

o Virtual infrastructure descriptor
representing the workflow graph

o Customized node definitions for each
node of the workflow. E.g. Vina node:

Rece
iver

Exec
utor

Forw
arde

r

appconf:
application definition,
i.e. exe, args, inputs,
outputs, endpoints,

etc.

inputs

ready

job

finished

- &Vina

name: Vina

type: flowbster_node

scaling:

min: 5

max: 5

variables:

jobflow:

app:

exe:

filename: vina.run

tgzurl: http://foo.bar/vina.tgz

args: ''

in:

-

name: ligands.zip

-

name: config.txt

-

name: receptor.pdbqt

out:

-

name: output.tar

targetname: output.tar

targetnode: COLLECTOR

ligands

config

receptor

output

To

COLLECTOR

Vina

From

GENERATOR

Define
parallellism

• Feeder: not part of Flowbster, should be written by the user
o Command line tool
o Feeds a given node/port of Flowbster workflow with input data items

• Collector: not part of Flowbster, should be written by the user
o Web service acting as a receiver
o Transfers the incoming data items into the target storage

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_fileFeeder
Colle
ctor

Feeding and gathering data set elements

Processed
data set

Data set
to be

processed

Exploitable parallelisms in Flowbster

• Parallel branch parallelism

• Pipeline parallelism

• Node scalability parallelism

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

D1D2

D3

Node scalability parallelism in Flowbster

G:1→N W
0,1,2…N1 0,1,2…N C:N→1

1

Generator-Worker-Collector parameter sweep processing pattern:

• The Generator generates N output data from 1 input data

• The Worker should be executed for every input data -> N
Worker instances can run in parallel for processing the N data

• The Collector collects the N results coming from the N Worker
instances and after processing them creates 1 output data

G W

W’

1 0,3,…

distribution:
round-robin

C
1

W’’

0,3,…

Heterogeneous multi-cloud setup of Flowbster in EGI FedCloud

OCCI
Occopus

OCCI

G

OCCI

OCCI

W

OCCI

OCCI

C

EGI FedCloud

e.g.: CESNET

OpenNebula

EGI FedCloud

e.g.: SZTAKI

EGI FedCloud

e.g.: BIFI

OpenStack

• Occopus can utilise multiple
clouds in a federation like
EGI FedCloud

• Nodes of deployable VI are
instantiated on different
FedCloud sites

• Connection is based on
public ips

G W C

VI Descriptor

• Experiment with Autodock Vina Workflow

• Question: What speedup can be achieved by node scalability
parallelism?

• 256 docking simulation having 2, 4, 8 and 16 instances of the
Vina (worker) node

Performance measurements

Case (number of Vina node
instances)

Makespan (minutes)

2 8

4 5

8 3

16 2

Current state of Occopus

• Open-source (License: Apache v2)

• 6 releases so far (latest in August 2016)

• Now: Release v1.2 (3rd production release)

• Python 2.7

• Base webpage: http://occopus.lpds.sztaki.hu

• Git: https://github.com/occopus

• Documentation:
o Users’ Guide

o Developers’ Guide

o Tutorials (e.g. building docker/swarm cluster)

• Package repository: http://pip.lpds.sztaki.hu/packages

http://occopus.lpds.sztaki.hu/
https://github.com/occopus
http://c153-86.localcloud:8080/packages

Current state of Flowbster

• Open-source (License: Apache v2)

• Running prototype

• First release comes in October 2016

• Available at Git: https://github.com/occopus

• Documentation under development:
o Users’ Guide

o Developers’ Guide

o Tutorials

• Further development plans
o Dynamic scalability for node scalability parallelism

o Built-in error diagnostic and fault-recovery mechanism

https://github.com/occopus

