Big Data analytics and Visualization

MTA Cloud symposium

A. Agocs, D. Dardanis, R. Forster, J.-M. Le Goff, X. Ouvrard CERN

MTA Head quarters, Budapest, 17 February 2017

Background information

- Collaboration Spotting (CS) Platform (V2) used to process examples
- CS is a Visual Analytics tool originally developed to analyse the technology landscape of key enabling technologies for the Particle Physics programme at CERN
 - Using Publications and Patent metadata
- The CS Platform has been used to visualize other datasets:
 - CERN procurement data
 - Ceased assets in collaborations with the UN-UNCRI
 - Neuro-science data in collaboration with Wigner

Characteristics of Big Data

Huge quantity
 Processing and storage

Distributed sources
 Access rights, security

- Complexity
 Valuable information may be hidden behind complexity
- Interconnectivity
 Unravelling new knowledge

Data scientists are instrumental to analytics
 Domain experts are at the heart of the reasoning process

Big Data is organised in networks

Big Data is distributed

- **Document** systems with metadata in Database
- Database tables with metadata in schema

Big Data is strongly interconnected

- Connectivity **not materialised** due to the distributed nature of data sources
- Connectivity relates to the understanding of the data

Big Data Intrinsic vs additional value

• The additional value of Big Data comes from its interconnectivity

Conventional analytics

Conventional + visual analytics

Two Criteria:

Bottom-up VS Top Down Discrete data VS highly interconnected data

When do domain experts really need to visualise Big Data Networks?

Top-Down VS Bottom-up

•

- Process driven
- Hypothesis
- Simulation software
- Validation with real data
- Review hypothesis
- Experiments

Discrete data

No-SQL

Compare results with simulation

Typically hard sciences

Data driven

- Extract features from data
- Generate hypothesis
- Run what-if scenario
- Validate with data

Empirical approach

Connected data

Graph DB

Relational DBMS

Domain expert vs Data scientist

Challenge → Bring domain experts at the centre of the visual analytics cycle

- Experts have the knowledge
- Data scientists have the skills

→ Bring analytics to experts

"Understand" results of analytics

Source: Tableau Software

"Instruct" computers to perform

analytics according to findings

CERN

Data scientists to build platforms that enable experts to perform analytics by themselves

What is required?

Network Data and Domain independent

Scalable and flexible

• Support interconnectivity

- Support Cross Domain applications

Smart Data management concepts and tools

Support any combination of uata structures

Easily accessible and navigable to Experts

Support visualisation of notwork contant

Smart graphic management concepts and tools

Enhance value of Data Network for Experts

oupport navigation of network content

• Support queries of network content

A Domain independent platform

Smart Data Management

Directed graphs are natural representations Complexity Interconnectivity of large and Scalability interconnected Multi dimensional datasets Nodes' labels Schema is embedded Compact graph structure Graph query language in the data No schema evolution Schema: labels and edges (interconnectivity) Graphs of connected • Labels ← → Graph dimensions elements constitute Edges ←→ Directed relationships between Labels · Data graph: vertices and edges multi-dimensional Vertices: data instances and dimension instances networks Edges: Directed relationships between vertices

CERN

Graph Databases offer a natural support for storing network information 11
 Label property graph data model

Journal of Crystal Growth

Abstract of RO122515 (B1)

Translate this text into i

Select language

rk from two data

Print

Volume 452, 15 October 2016, Pages 22–26

ACCGE-20 Growth and E on Organome

20.	Bibliographic data: RO122515 (B1) — 2009-07-30							
l E ne	🚖 In my patents list	Previous	•	2/24	Þ	Next		

PROCESS FOR MANUFACTURING A HIGH EFFICIENCY SOLAR CELL ON MONOCRYSTALLINE SILICON

Analysis of the effe fields on melt/crysta growth

Parthiv Daggolu^a, Jae Woo Ryu^a

Show more

http://dx.doi.org/10.1016/j.jcrysç

Page bookmark	RO122515 (B1) - PROCESS FOR MANUFACTURING A HIGH EFFICIENCY SOLAR CELL ON MONOCRYSTALLINE SILICON
Inventor(s):	MANEA ELENA [RO]; PODARU CECILIA [RO]; BUDIANU ELENA [RO]; MUNIZER PURICA [RO]; CORACI ANTONIE [RO]; POPESCU ALINA [RO] $\underline{+}$
Applicant(s):	INSTITUTUL NATIONAL ICCF [RO] <u>+</u>
Classification:	- international: H01L27/142; H01L31/04; H01L31/042; H01L31/06
	- cooperative: Y02E10/50
Application number:	RO20060000749 20060927
Priority number(s):	RO20060000749 20060927

Highlights

- Effect of CUSP magneti
- Symmetric CUSP provide
- Asymmetric CUSP with
- 2D model predicts the i
- 3D unsteady model allo

patenttranslate powered by EPO and Google

Abstract

With the use of 300 mm sili manufacturing, the Czochi achieve higher quality and models combined with 3D time and money in the proc growth is controlled by a C turbulence. MF can be opt

The invention relates to a process for manufacturing a solar cell by using a monocrystalline silicon substrate. According to the invention, the process consists in manufacturing a Czochralsky-type substrate silicon wafers (1), said substrate exhibiting a resistance of 1 ... 2 ohm x cm, orientation <100>, till the thickness of the oxide (2) reaches 1.8 nium, at a temperature of 1,000A C and for 300 min/vapours, followed by the removal of the oxide from the wafers back side by means of photolithographic process, and then the wafers are enriched with boron from a solid source at a temperature of 1,110A C for 20 min/source, in order to obtain a protection oxide (3) with a thickness of 0.6 nium, followed by the application of a photolithographic process for texturing the wafer front side, obtained by silicon etching through the oxide masking layer, by using the "honeycomb-like array" topography, at the end of the etching, the oxide used as masking layer being lifted, leaving the active area free, followed by forming the junction n+ (5) in the active area carried out by a prediffusion from liquid source of POCI3 at a temperature of 1,000A C for 10 min/vapours, a junction of 0.8 nium, a V/I ratio = 0.5 ohm and an anti-reflex oxide (6) of 95 mium being obtained.

(Pat)

Document metadata

Graph of data types

Graph of Network

T: Technologies, A: Pub/Pat, K: keywords, O: Organisations, C: Countries

Data Graph & Graph Schema

Graph of data network

Reachability Graph

Building multi-dimensional networks

Combining data sources → Enriching networks → More interconnectivity

Data sources

- Publications/Patents
 - Citations
 - Institutions/Companies

Data sources

- EU projects
- Financial data
- Geolocation data

Schema: Graph of datatypes/labels Dimension: a datatype i.e. a node in the graph schema

No limitations on the extension of the network's schema!

Smart Graphic Concepts and Management tools

Graphs are excellent for visualising networks

- Retain complexity
- Singularities
- Clusters/communities/patterns

Graphs contain many visual information

- Vertex label, shape, size and colour to visualise properties of datasets
- Edges colours to highlight clusters

Smart Graphic Concepts and Management tools(2)

Maximizing human understanding

- Selecting network dimensions
- Traversing network dimensions
- Graphical queries
- Time/Frequency evolution

Enhancing reasoning

- Viewing multiple data sources
- Looking for collaborations
- Sorting communities
- Contextual visualisation & analytics

Selecting Visualisation dimensions

Reference dimensions for Analytics

Pub: Publications, Pat: Patents (Attributes: Title and abstract are used for semantic searches) Visualisation dimensions of Analytics results:

SCat: Journal category, Kw: Keyword, Org: Organisation and Cny: Country)

Pub/Pat: documents found in search resu

How to scale up the "graph" approach for very large multidimensional networks?

Visual analytics for large datasets

Visual analytics features

- Visual analytics <u>does not replace</u> Big Data analytics -> Visualize results
- Maintain visual perception quality and user interactivity
 - No matter the **size**
 - No matter the **diversity** (dimensions)
 - No matter the **interconnectivity**

Data sampling & filtering

Visualize subsets of network dimensions
 View data from different perspectives

Visual analytics Needs

- Visualize part of data network with respect to particular references and from different perspectives
 - **Reference**: Data dimensions (labels)
 - **Perspective**: Visual dimensions (labels)
- Need to navigate across visual dimensions
 - => Visual queries
- Need to get contextual statistics
 - In the context of a particular view
- Need to change Data Reference while navigating
 - Queries adapted to change of reference

Visual analytics Features (2)

Structural vs Behavioural

Understand from the data how something is working

Visualization

- Maximum number of collaborations that can be processed (~100k) to feed visualization
- Maximum number of vertices and edges one can visualize within a graph (~ 10k)
- Maximum number of Clusters one can visualize within a graph (~10k)

Data quality

- Can the data be trusted?
- How complete is the dataset under study?

Visual analytics Needs(2)

- Need to visualize **processes**, **interactions** in addition to **structure** of data network
 - Connectivity graphs AND
 - Causality graphs → directed edges
- For large graphs:
 - Replace vertices with communities in complex graphs
 - Compound graph approach
- For graphs built out of large collaborations
 - Replace 2-adic calculations with m-adic
- Example
 - Neuro science: paths of length 2 to visualize input/process/target flows

Reduce visual complexity & faster graph processing: Hyperedges vs edges

Organisation landscape graph view

Organisation landscape hypergraph view

Technology search: BGO Crystals Pub/Pat: documents found in search results

Edges vs hyper-edges

Tailor visualisation to data

- STRATEGY: Combining various techniques to support quality visual perception and user interactions according to data and graph sizes
 - Statistics
 - Data sampling & Reduction
 - Compound graphs
 - 2-adic vs n-adic node-link graph representation

Combining techniques for visualisation

→ Objective: Reduce dataset and graph content with very minimal loss in visual perception 28

Computing requirements for visualization

- Service users within a few seconds
- Heavy computing at the backend to process clusters, optimize layout and support visual navigation
- Need for Cloud computing
 - Using machines with 4 CPU cores (8 threads), 8 GB of memory
- CPU vs GPU
 - Comparing them using consumer level hardware (Intel Core i7, GeForce GTX 980)

Computing requirements for visualization

- Computation on the CPU
 - Graphs with tens of thousands of nodes and hundreds of thousands of edges, computing requires ~17 seconds.
 - Further optimization can be achieved by further distributing the computation among multiple machines
- Computation on the GPU
 - Same graphs compute ~8 times faster (~2 seconds)
 - Distribution among multiple GPUs is a further possible optimization

Computing requirements for visualization

The macaque case

Linear graph model of the network of cortical interactions

Constructed Reachability Graph

Visual dimensions?

Macaque brain network data: optimal for navigation

g₂ (with intercluster edges)

Community_61 Egocentric

		1 Layout
Collaboration	• •	■ + ∓ ■ C → ✓ ■ Navigat
spotting		
Current vear: 2017		
Data: 96		
Clusters: 172		
Data Users		
« Back to Clusters		
6/SMA/V4/V4/WST0/p		
FFF/V4/V4/MSTd/p		
FST/V2/V2/MSTd/p		
FST/V4/V4/MSTd/p		
INS/V4/V4/MSTd/p	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second
LIP/V2/V2/MSTd/p		
LIP/V4/V4/MSTd/p		
MSTd/p/V2/V2/MSTd/p		Constant of the second second second
MSTd/p/V4/V4/MSTd/p		
MSTI/V2/V2/MSTd/p		
MT/V2/V2/MSTd/p		
MT/V4/V4/MSTd/p		
PIP/V2/V2/MSTd/p		
PIP/V4/V4/MSTd/p		
PO/V2/V2/MSTd/p		

?

on Base: G1

Community_61 V4/MSTd/p/MSTd/p/MSTd/p/FEF V4/MSTd/p/MSTd/p/VP V4/MSTd/p/MSTST/A/MSTd/p/MSTd/p/V4t V4/MSTd/p/MSTd/p/DP V4/MSTd/p/MG54/a/b/RSTd/p/V2 V4/MSTd/J/MSFTH/MSTd/p/MSTd/p/7b V4/MSTd/p/MSTd/p/Epd/V4/V4/MSTd/p V4/MSTd/p/MSTd/p/V1_Fam-a/p/V4/V4/MSTd/p-TF/V4/V4/MSTd/p V2/MSTd/p/MSTd/p/MSTd/p/FEF V4/MSTd/p/MSTd/p/PO/V4/V4/MSTd/p V2/MSTd/p/MSTd/p/LIPV4/MSTd/p/MSTd/p/6/SMA TF (TEpv?)/V4/V4/MSTd/p STPP: 6/SMA/VA/V4/MST0/EF/V4/V4/MST0/p V2/MSTd/p/MSTd/p/46 V2/MSTd/p/MSTd/p/VP V2/MSTd/p/MSTd/p/V1 MSTd/p/V4/V4/MSTd/p4/V4/MSTd/p DP/V4/V4M95104/V4/MSTUSS/V4/V4/MSTUS V2/MSTd/p/A9/STd/p/MSTd/p/6/SMA TEav/V4/V4/MSTd/p LIP/V4/V4/MSTd/p V1/V4/V4/ 4/MSTd/p______Y3/V4/V4/WSTd/p VIP/V4/V4/MSTd/p V2/MSTd/p/MSTd/p/TEO V2/MSTU/AMSTU/AMSTU/AMSTU/AMSTU/P/FST 46/V4/V4/MSTd/p MT/V4/4/MSTd/p V3A/V4/V4/MSTd/p PO/V24/2/MSTd/poAron V2/MSTd/p/MSTd/p/MSTd/p/TEpd V41/V2/V2/MSTd/pstp//2/V2/MSTd/pv/V4/V4/MSTd/p VP/V2/V2/MSTd/p TEO /V2/V2/MSTd/p VOT/V2/VE/ME/V2/MSTd/p V3A/V2/V2/MSTd/p TEad/V2/V2/MSTd/p STPp/V2/V2/MSTd/p MT/V2/V2/MSTd/p V1/V2/V2/MSTd/p V3/V2/V8/W92/V2/MSTd/p MSTI/V2/V2/MSTd/p TF (TEpv?)/V2/V2/MSTd/p VIP/V2RIEMSY24MSTd/p 39

V4/MSTd/p/MSTd/p/V2

V2/MSTd/p/MSTd/p/MSTd/p/FEF V2/MSTd/p/MSTd/p/MSTd/p/LIP V2/MSTd/p/MSTd/p/46 V2/MSTd/p/MSTd/p/VP V2/MSTd/p/MSTd/p/V1 V2/MSTd/p/MSTd/p/MSTd/p/7b

V2/MSTd/p/MSTd/p/MSTd/p/6/SMA V2/MSTd/p/MSTd/p/STPp V2/MSTd/p/MSTd/p/TEO

V2/MSTd/p/MSTd/p/MSTd/p/FST

V2/MSTd/p/MSTd/p/STPa V2/MSTd/p/MSTd/p/MSTd/p/MT V2/MSTd/p/MSTd/p/TEpd

MSTd/p/V2/V2/MSTd/p

Conclusion

- To visualize Big Data Analytics output you need:
 - Graphs to store your data networks and their schema
 - **Graphs** to view network structure through selected dimensions
 - Graphs to navigate across dimensions to provide contextual data to visualisation tools
- To maintain visual perception you need to combine various techniques
 - Statistics, sampling, compound graph, layered graph

 To support structural and behavioural visualisation you need to explore

- Clustering algorithms supporting directed edges
- Processes, interactions in relation with the data

Thank you for your attention!